3.672 \(\int \frac{1}{\sqrt{-2-3 \sec (c+d x)} \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=123 \[ -\frac{3 \sqrt{2 \cos (c+d x)+3} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{4}{5}\right )}{\sqrt{5} d \sqrt{-3 \sec (c+d x)-2}}-\frac{\sqrt{5} \sqrt{-3 \sec (c+d x)-2} E\left (\frac{1}{2} (c+d x)|\frac{4}{5}\right )}{d \sqrt{2 \cos (c+d x)+3} \sqrt{\sec (c+d x)}} \]

[Out]

-((Sqrt[5]*EllipticE[(c + d*x)/2, 4/5]*Sqrt[-2 - 3*Sec[c + d*x]])/(d*Sqrt[3 + 2*Cos[c + d*x]]*Sqrt[Sec[c + d*x
]])) - (3*Sqrt[3 + 2*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 4/5]*Sqrt[Sec[c + d*x]])/(Sqrt[5]*d*Sqrt[-2 - 3*Sec[
c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.204202, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {3862, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac{3 \sqrt{2 \cos (c+d x)+3} \sqrt{\sec (c+d x)} F\left (\frac{1}{2} (c+d x)|\frac{4}{5}\right )}{\sqrt{5} d \sqrt{-3 \sec (c+d x)-2}}-\frac{\sqrt{5} \sqrt{-3 \sec (c+d x)-2} E\left (\frac{1}{2} (c+d x)|\frac{4}{5}\right )}{d \sqrt{2 \cos (c+d x)+3} \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-2 - 3*Sec[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

-((Sqrt[5]*EllipticE[(c + d*x)/2, 4/5]*Sqrt[-2 - 3*Sec[c + d*x]])/(d*Sqrt[3 + 2*Cos[c + d*x]]*Sqrt[Sec[c + d*x
]])) - (3*Sqrt[3 + 2*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 4/5]*Sqrt[Sec[c + d*x]])/(Sqrt[5]*d*Sqrt[-2 - 3*Sec[
c + d*x]])

Rule 3862

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[1/a,
 Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[b/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b
*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-2-3 \sec (c+d x)} \sqrt{\sec (c+d x)}} \, dx &=-\left (\frac{1}{2} \int \frac{\sqrt{-2-3 \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\right )-\frac{3}{2} \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{-2-3 \sec (c+d x)}} \, dx\\ &=-\frac{\sqrt{-2-3 \sec (c+d x)} \int \sqrt{-3-2 \cos (c+d x)} \, dx}{2 \sqrt{-3-2 \cos (c+d x)} \sqrt{\sec (c+d x)}}-\frac{\left (3 \sqrt{-3-2 \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{-3-2 \cos (c+d x)}} \, dx}{2 \sqrt{-2-3 \sec (c+d x)}}\\ &=-\frac{\left (\sqrt{5} \sqrt{-2-3 \sec (c+d x)}\right ) \int \sqrt{\frac{3}{5}+\frac{2}{5} \cos (c+d x)} \, dx}{2 \sqrt{3+2 \cos (c+d x)} \sqrt{\sec (c+d x)}}-\frac{\left (3 \sqrt{3+2 \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{3}{5}+\frac{2}{5} \cos (c+d x)}} \, dx}{2 \sqrt{5} \sqrt{-2-3 \sec (c+d x)}}\\ &=-\frac{\sqrt{5} E\left (\frac{1}{2} (c+d x)|\frac{4}{5}\right ) \sqrt{-2-3 \sec (c+d x)}}{d \sqrt{3+2 \cos (c+d x)} \sqrt{\sec (c+d x)}}-\frac{3 \sqrt{3+2 \cos (c+d x)} F\left (\frac{1}{2} (c+d x)|\frac{4}{5}\right ) \sqrt{\sec (c+d x)}}{\sqrt{5} d \sqrt{-2-3 \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0886176, size = 78, normalized size = 0.63 \[ \frac{\sqrt{2 \cos (c+d x)+3} \sqrt{\sec (c+d x)} \left (5 E\left (\frac{1}{2} (c+d x)|\frac{4}{5}\right )-3 \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{4}{5}\right )\right )}{\sqrt{5} d \sqrt{-3 \sec (c+d x)-2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-2 - 3*Sec[c + d*x]]*Sqrt[Sec[c + d*x]]),x]

[Out]

(Sqrt[3 + 2*Cos[c + d*x]]*(5*EllipticE[(c + d*x)/2, 4/5] - 3*EllipticF[(c + d*x)/2, 4/5])*Sqrt[Sec[c + d*x]])/
(Sqrt[5]*d*Sqrt[-2 - 3*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.284, size = 390, normalized size = 3.2 \begin{align*} -{\frac{1}{10\,d\sin \left ( dx+c \right ) \left ( 3+2\,\cos \left ( dx+c \right ) \right ) } \left ( 2\,i\sin \left ( dx+c \right ) \cos \left ( dx+c \right ){\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},{\frac{\sqrt{5}}{5}} \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{10}\sqrt{{\frac{3+2\,\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sqrt{2}-5\,i\sin \left ( dx+c \right ) \cos \left ( dx+c \right ){\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},{\frac{\sqrt{5}}{5}} \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{10}\sqrt{{\frac{3+2\,\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sqrt{2}+2\,i{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},{\frac{\sqrt{5}}{5}} \right ) \sqrt{2}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{10}\sqrt{{\frac{3+2\,\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -5\,i{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},{\frac{\sqrt{5}}{5}} \right ) \sqrt{2}\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{10}\sqrt{{\frac{3+2\,\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -20\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-10\,\cos \left ( dx+c \right ) +30 \right ) \sqrt{-{\frac{3+2\,\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x)

[Out]

-1/10/d*(2*I*sin(d*x+c)*cos(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),1/5*5^(1/2))*(1/(cos(d*x+c)+1))^(1/2
)*10^(1/2)*((3+2*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*2^(1/2)-5*I*sin(d*x+c)*cos(d*x+c)*EllipticE(I*(-1+cos(d*x+c
))/sin(d*x+c),1/5*5^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*10^(1/2)*((3+2*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*2^(1/2)+2
*I*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),1/5*5^(1/2))*2^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*10^(1/2)*((3+2*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-5*I*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),1/5*5^(1/2))*2^(1/2)*(1/(cos(
d*x+c)+1))^(1/2)*10^(1/2)*((3+2*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-20*cos(d*x+c)^2-10*cos(d*x+c)+30)
*(-(3+2*cos(d*x+c))/cos(d*x+c))^(1/2)/(1/cos(d*x+c))^(1/2)/sin(d*x+c)/(3+2*cos(d*x+c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-3 \, \sec \left (d x + c\right ) - 2} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-3*sec(d*x + c) - 2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-3 \, \sec \left (d x + c\right ) - 2} \sqrt{\sec \left (d x + c\right )}}{3 \, \sec \left (d x + c\right )^{2} + 2 \, \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-3*sec(d*x + c) - 2)*sqrt(sec(d*x + c))/(3*sec(d*x + c)^2 + 2*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- 3 \sec{\left (c + d x \right )} - 2} \sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2-3*sec(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt(-3*sec(c + d*x) - 2)*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-3 \, \sec \left (d x + c\right ) - 2} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-2-3*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-3*sec(d*x + c) - 2)*sqrt(sec(d*x + c))), x)